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PARALLEL CURRENT EFFECTS ON AURORAL
E-REGION PLASMA INSTABILITIES

I. INTRODUCTION

It is generally agreed that the electrojet current in the auroral E-

region is responsible for generation of the plasma density irregularities

which have been detected by several experimental techniques [Fejer and

Kelley, 1980]. The coherent radar backscatter returns at 50 Mhz (which are

caused by the presence of 3-meter size irregularities) have yielded a large

amount of data on the features of these irregularities. These

irregularities have been classified into three types based upon the doppler

spectra of the radar returns. The type I irregularities display a narrow

spectral peak around the ion sound velocity and are believed to be caused
by the Farley-Buneman instability; this instability can occur when the

electron Hall drift velocity exceeds the ion-sound velocity [Balsley and

Ecklund, 1972]. The type II irregularities are believed to be a result of

a nonlinear cascade by large scalesize irregularities that are generated by

the gradient-drift instability mechanism (the Hall current acting upon a

transverse gradient) and can be excited for electron drift speeds less than

the ion sound velocity. The type II spectra are relatively broad around

the E x B electron Hall drift velocity [Greenwald, 1974; Greenwald et al.,

1975]. Both the type I and II spectra are caused by modes that are excited

in the direction transverse to the ambient magnetic field (as the driving

electric field is also perpendicular to the magnetic field).

However, there are many instances when the irregularity observations

are found to show departures from the above patterns. There have been

Manuscrip approved June 27, 1986.



observations of type I irregularities at a time when the electron Hall

drift was subcritical, i.e., less than the ion sound speed, Cs [Siren et

al., 1977]. There is now evidence of a new type of irregularity, termed

type III, which displays even a narrower doppler spectra than the type I,

but peaked around velocities less than the ion sound speed and not as

highly field-aligned as the types I and II, i.e., has a finite structure

along the magnetic field [Haldoupis et al., 1985; Fejer et al., 1984a;

Greenvald et al., 1975]. A field-aligned current-driven electrostatic

ion-cyclotron instability has been invoked to interpret these

irregularities [D'Angelo, 1973; Chaturvedi, 1976; Ogawa et al., 1981; Fejer

et al., 1984b; Bering, 1984; Haldoupis et al., 1985; Providakes et al.,

1985; Satyanarayana et al., 19851. However, the theory for the ion-

cyclotron instability can only be justified in the upper E-region

(altitudes > 130 km) where ions are magnetized (vin < Qi' where Vin is the

ion-neutral collision frequency and Qi is the ion gyrofrequency),

and care must be exercised while using the ion-cyclotron instability

mechanism at lover altitudes where the ions are collisional, i.e., vin > Qi

(- 100-120 km altitudes).

In this report, we consider the plasma instability processes occurring

at E-region altitudes, where ions are collisional, and include the effects

of an equilibrium parallel current [Akasofu, 1984]. We find that the

inclusion of a parallel electron drift makes possible the excitation of the

Farley-Buneman (F-B) instability for electron Hall drifts lower than the

ion-sound speed, and can result in the excitation of obliquely propagating

F-B and. ion-sound modes. In this regard, we mention that auroral

irregularities have been observed in the regions of downward Birkeland

currents (that are carried by the thermal electrons) [Tsunoda et al., 1976;

McDiarmid and McNamara, 1978], and, in the vicinity of Harang Discontinuity

[Sofko et al., 1985]. In this work, ve have not considered any nonlocal
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effects for these modes [Kaw, 1972; Moorcroft, 1984; St.-Maurice, 1985].

In the following, we first present a brief outline of the theoretical

approach and then discuss the results for the auroral E-region situation.

II. THEORY

A general dispersion relation describing the auroral E-region modes has

been given in many places; we consider the one derived by Fejer et al.

[1984b] using the two-fluid equations. The use of fluid equations is valid

for wavelengths greater than the ion-mean-free path (Q a meter) [Schmidt

and Gary, 1973]. The coordinate system used here has the z-axis aligned

with the Earth's magnetic field, BoZ. An equilibrium transverse electric

field, Eox, results in the electron Hall drift, voy , along the y-axis

(East-West direction). An equilibrium parallel current, Joz, (carried by

thermal electrons with a drift velocity, v02 ) is assumed to be present.

The ions are assumed collisional (v in > Q) and the electrons are

magnetized (ven <<  e), where van and 9 ( e B /mac) are, respectively, the

particle collision frequency with neutrals and the gyrofrequency, and m

is the particle mass. For obliquely propagating modes

[- exp (ik yy + ikzz - iwt)J, the dispersion relation is

(w- k.v )(vin - iW) + (gWaQ + (Vi - iW) 2  + ikC 2(v - I) ) - 0 (1)-- in1 in -s in v in

where 2k
w eevin e 2 k 2 2 (Te + Ti)

e 1 + k mi (2)e

In the above, recombination damping is neglected (as it is important only

for the long wavelength modes, whereas we are interested in the 3 meter

irregularities) and electron inertia is ignored. The symbols used have
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their standard meanings: h. kyy + kzz is the modal wavenumber and w the

complex frequency, vo is the equilibrium electron drift velocity with a

Hall component (voyY) and a parallel component (vozi), and TL is the

temperature expressed in energy units.

For collisional altitudes (vin > i),we may rewrite eq. (1) as

(w - k-y) + i( o2 - k C 2 )]_j_ . 0 (3)- in in

This dispersion relation can be solved to yield the Farley-Buneman

instability and the ion-acoustic instability, respectively, in the

approximations 1I0 < V in and Ic(I > Vin' We now present the analytical

expressions for the tvo cases, and, will present some numerical results

appropriate for the auroral electrojet in the next section.

A. Modified Farley-Buneman Instability
N It is straightforward to obtain the usual result of the Farley-Buneman

* instability from the above (i.e., k. a 0). One finds that [Fejer et al.

1984b] the real frequency and the growth rate are given as () - Ar 4 iY,

Ir < d

()a 1 k v (4a)
"r (1+ Y) yoy

and
Y T 2 - k 2 C2 - (bym (c. y -kC) (4b)
V in(14Y) r ys

where ' a vein/ eQ* Instability occurs when voy > (1 .)C s .

For kz 0 0, we can write (3) as

kv (2 2 2
5 - + (5)

( + T) in (4 + T)
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where T has been defined in (2). From (5), we can write approximate

expressions for real frequency and the growth rate of the modes as follows

+ iY, hI < Or)

Or ( + kzvOZ (6a)

SV 2 - k2Cs2) (6b)V in (1 + T)

The new instability condition is given by

kkky + __ + T) C (7)
oy y

For a parameter domain such that (kz /k)(Qe /v) >> 1 (and,

(e/ve)(vin/Qi)(kz 2/k 2 ) > 11, it may be readily verified that the growth

rate (and the real frequency) in (6) maximize for (kz/k) - 2 (voy/voz).

Note that this implies that the modes are not too highly field-aligned

(kz/k >> ve/Qe). In the general case, the criteria determining the optimum

growth rate (and the real frequency) are somewhat complex, and we have not

attempted to present them here. For kz  0 0, (7) yields the usual

instability criterion (voy > (1 + T)C s ) of the Farley-Buneman instability.

For kz # 0 and voz 0 0, we recover the result that the inclusion of

parallel wavelengths increases the threshold value of electron drift

required for the excitation (voy > (1 + Y)Cs) [Ossakow et al., 19751.

Since, T > 1 for the parameter domain of our interest, the requirement, voy

> ICs , may be difficult to satisfy in actual situations. The drift

velocity condition for instability in this case may be expressed as

k kk¢ z
voy > i(l + V)C s - -V

y y
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It is clear from (7) that for sufficiently large values of voz an

obliquely propagating mode may still be excited and, further, the

instability criterion may be met for voy < Cs.

B. Ion-Acoustic Instability

The ion-acoustic wave excitation by the Hall current in auroral

electrojet has been discussed by Kaw [1973]. Here we include the effects

of a parallel current on this mode. For vin < jwj, we find from (3) that

the dispersion relation for obliquely propagating ion sound waves is

22 2  m e 2 - k,(
W(O + k - k e(w - k-v)/(1 + - (8)

in s m 2 - 2Skz e kz

1/2 4 232 2 2
where Vin vin + (n/2) (o) /Iklk 2 vi) exp (-2 /2k vi), and we have

included the ion-Landau damping effects for completeness. We can write the

real frequency and growth rate for these modes from (8) as (o wr + iy,

IY < O),

wr ukCs (9a)

- 1 me k 2  kv V2 k2
----vii --= V~+-- (9b)

2in 2 m- k2 e1 1 72)i k ~ r 2ekzz e z

Physically, the current-driven ion-acoustic instability is related to the

parallel dissipative motion of electrons. In the absence of equilibrium

currents (v, - 0), the second term in (9b) represents the damping of the

mode by the collisional parallel electron motion (v e) that inhibits them

from being redistributed in wave potential in Boltzmann-like distribution

[ne  n 0 exp (ef/T ), thereby making the density-potential relationship

6
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complex. In the presence of equilibrium currents (v0 ), the electrons "see"

the waves at a Doppler-shifted frequency (w - k.vo); for equilibrium drift

velocity larger than the wave phase velocity in the drift direction (W <

k._o), the wave energy in the drift frame becomes negative. Thus, the

dissipation of the negative energy wave leads to a wave growth. The second

term in the denominator in the growth term in (9b) results from the

transverse collisional motion of electrons, and has an effect of reducing

the growth rate. For the case of Hall currents, v v ye y, we recover from

(9b), the instability discussed by Kaw [19731. For a parallel current, vo

V oz ez, a collisional ion-acoustic instability is obtained. In general,

the instability criterion may be written down as,

k v k v0 - k 2 m 2 12

OY+_RO 1+in z ek
k C s k C s 'ek 2 m e Q2 k 2 )10

e z

where as noted before, vin includes the ion-Landau damping effects. In the

upper auroral E-region where vin is sufficiently small (so that vin < W r -

kC s), we find that a parallel current (in possible conjunction with the

Hali current) may drive an oblique ion-sound mode unstable. This result

may have relevance to the observations of non-field-aligned auroral

irregularities [Haldoupis et al., 1985]. We also mention that, as noted by

Kaw [1973], the time-dependence of the ion sound wave frequency due to the

evolution of electron temperature (Te) in a collisional medium is not a

problem here. In the partially ionized auroral E-region, Te reaches a

steady state value in an energy relaxation time (m eve/mi)- after which it

stays constant, the neutrals providing the sink of energy. Further, the

experimental observations of enhanced electron temperatures (which make

Te/Ti > 1) [Schlegel and St.-Maurice, 1981] suggest a possible excitation

of ion-sound waves, as the thresholds for excitation at Te/Ti > 1 are lower

7



than the case with T e = T. [Kindel and Kennel, 19711.

III. DISCUSSION

In the above, we have included the effects of a parallel equilibrium

current (carried by drifting electrrns) on the excitation of the Farley-

Buneman and ion acoustic instabilities in the auroral electrojet. The

presence of a parallel current modifies the dispersion equation for these

modes, and makes possible the excitation of obliquely propagating modified

Farley-Buneman and ion acoustic modes for sub-critical levels of electron

Hall drift (voy < C s). We now present some numerical estimates for the

threshold requirements on the parallel currents for the excitation of these

modes in the auroral E-region.

We numerically solve (3) for parameters appropriate to the auroral

electrojet region. For an altitude of 105 km we consider the following

-1 3 -1typical parameters: = 3.5 x 104 sec , . = 2.5 x 10 sec , Q = 8.8,"'ein e

a106 sec-1  Q= 1.8 X102 sec-I, and Cs M350 m/sec. For 3 m wavelength

waves we note thatin As = 3.5. In Fig. 1 we plot the real frequency

w r/kCs vs kz/ky (Fig. la) and the growth rate y/kCs vs kz/ky (Fig. Ib) for

voy/Cs = 1.0 and v0 =/C M 0 (A), 25 (B), 50 (C) and 75 (D). We note the

following. First in the absence of a parallel current (voz =0), the turn-

on criterion for instability is voy > (1 + T)Cs. Since we have taken

Voy /Cs M 1 we expect the Farley-Buneman mode to be stable and this is

clearly evident from curve A in Fig. lb (i.e., y < 0). Second, for finite

values of v and k unstable modes can be excited (e.g., see curves C and

D of Fig. 1b). The band of unstable modes corresponds to modes with wr >

kC (e.g., see curves C and D of Fig. la). Third, for sufficiently large

values of k z/ky (for our parameters k z/ky > 0.02), the unstable modes

become damped (i.e., y < 0). This is because w r a (k z/k y)- for large

kz/ky (i.e., kz/ky > v e/9 e); as k z/ky increases, wr decreases and

44%
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eventually wr < kCs so that y < 0. And fourth, increasing values of vozlC s

lead to enhanced growth rates and a broader range of instability in k z/ky.

In Fig. (Ic), we have plotted the critical Hall drift required for the

excitation of the instability in presence of voz and kz. It can be readily

seen that for sufficiently large value of voz, the instability may occur

for Voy/Cs < 1 (for oblique modes).

At somewhat higher altitudes in the E region, the ion-neutral collision

frequency decreases so that vin < W r For example at - 115 km we consider

the following parameters: ve = 5.3 x 1 sec 1, V in = 3.6 x 102 sec 1, Qe

= 8.8 x 106 sec-1 , Qi 1.8 x 102 sec -1, and C5  350 i/sec. For 3m

wavelength modes, we note that v. /kC = 0.5 < 1, and ion acoustic wavesin s

may be excited. In Fig. 2 we plot the real frequency r/kCs vs. kz/ky

(Fig. 2a) and the growth rate y/kCs vs. k z/ky (Fig. 2b) for the above

* parameters with voy /Cs = 1.0 and v oz/C = 0 (A), 25 (B), 50 (C), and 75

(D). The important features are the following. First, as in Fig. 1, for

, oz - 0 there are no unstable modes (curve A of Fig. 2b). As k z/ky becomes

large we note that (r - kCs and Y - -v in /2 in accordance with (9). Second,

for finite values of voz and kz unstable modes can be excited (as in Fig.

1). In this case we note that the threshold parallel velocity for

instability is lower than in the previous case; for example, for k z/ky =

5.0 x 10-3 the threshold velocity is voz = 17 Cs for the parameters used in

Fig. 2 while it is voz = 29 Cs  for those used in Fig. 1. Third, the

unstable waves have maximum growth rates somewhat larger than those shown

in Fig. 1, and peak at somewhat lower values of k z/k y. And fourth, the

most significant difference between Figs. 1 and 2 is the asymptotic

behavior of wr and y for large kz/k . In Fig. 1, both wr and Y

monotonically decrease for large values of kz/ky; however, in Fig. 2, r

and y asymptote to ky C and -vin/2, respectively for large k z/k y. This

difference may have observable consequences with regard to the nonlinear

9



evolution of these modes. We viii discuss this shortly. We mention here

that Fejer et al. [1984b] have discussed the properties of the two-stream

ion-cyclotron mode in the presence of parallel and cross-field currents at

an altitude where vin/1  - 1.

We see from the above results that for oblique modes (kz # 0), the

threshold Hall drift for the excitation of the Farley-Buneman instability

is very high. Thus, for the excitation with voz = 0 and kz /k - .02, the

criterion is v0o > 3.5 km/sec. Such drift velocities would correspond to

transverse electric fields > 175 mV/m, a value that is much larger than the

reported (though infrequent) measurements of fields up to 150 mV/m.

However, there are also measurements, at times, of large scale parallel

currents on the order of tens of uA/m 2  in the high latitude ionosphere

[e.g., Bythrov et al., 1984]. These currents close in the E-region

[Akasofu, 1984]. Thus, obliquely propagating modes in the E-region would

be affected by plasma flovs both in the transverse as well as in the

parallel direction. For a current Joz - 94 uA/m2 [Bythrov et al, 19841,

with n - 104 cm-3 , the parallel electron drift velocity computed from the

expression, J0o - n 0ev03, is v0o - 60 km/s. One finds from Fig. 1 that,

for oblique propagation in the presence of such a parallel drift velocity,

the Farley-Buneman instability may still directly generate 3 meter

irregularities for the sub-critical electrojet velocities, i.e., voy < Csy

or Eol < 20 mV/m. The Doppler returns in this case would be peaked around

a velocity different from the electron Hall drift. We note that an

excitation for the sub-threshold conditions of type I irregularities has

i .been reported [Siren et al., 1977]. Further, for parameters listed above

for - 105 km. altitude, and for v02  - 100 Cs and kz /ky . 0.02, one finds

that the electron Hall drift required for excitation (from (7)) is

kv > 2.336 C s k
oy - s s

10



= . 336C
S

which gives a required drift speed voy of only 118 m/s, or a Doppler shift

of 39 Hz at 50 MHz, in agreement with the Type III observations of the

Univ. of Saskatchewan group. However, we wish to mention here that the

large parallel currents are also accompanied by enhancements in the ambient

density. Thus, the computation of parallel electron drift velocity from

the observed current for the corresponding density (as has been done

above), often leads to values of drift speeds that fail to meet the

thresholds required for excitation. A possibility, that needs to be

experimentally checked, is that these large structured currents cause a

structure in the density also, with the regions of low density experiencing

the plasma wave excitation. We further note here that it has been

suggested that the field aligned current generated ion-sound turbulence may

be taken into account by introducing an effective (anomalous) electron

collision frequency (v*), and this large v* may then be used to explain the

excitation of oblique Farley-Bunemen instability [Volosevich and

Liperovskiy, 1975]. The recent observations of non-field-aligned radar
*

echoes by Haldoupis et al. (1986] can be explained by this theory if Ve

300 ve . However, the present theories of plasma turbulence seem unable to

account for such a large anomalous enhancement of ve"

We have noted earlier that the ion-acoustic instability is likely to

occur at upper E-region altitudes, where the ion-neutral collision

frequency is smaller than the wave frequency. The electrojet current (the

electron Hall drift) is maximum at - 105-110 km altitudes, and decreases

upwards. Thus, ion sound wave excitation may be primarily caused by the

field-aligned currents, with possible contributions from the electrojet.
Fork/ky .01 and - 10, we find from Fig. 2 that a transverse

Frkz Ay Vin/ve

field of - 20 mV/m and v - 25 km/sec could result in the wave excitation.

Larger transverse electric fields and/or larger parallel currents can

110



result into excitation of modes with higher k z/ky. We note that the Harang

discontinuity observations of Sofko et al. [1985] show a transition from

near ion-acoustic to subcritical (type III - like) velocities, and then

back to near ion-acoustic velocity in the period of less than 2 minutes

(See Fig. 6. of Sofko et al. [1985]). These observations are in agreement

with the above ideas of a short-lived parallel current influencing the

auroral electrojet instabilities. We find from the above estimates that in

general the linear excitation of modes with large k z/ky - 0.2 involves

threshold requirements which appear difficult to satisfy, based upon the

observed magnitudes of currents. Therefore, we suggest the possibility

. that the modes that are excited linearly with small k saturate nonlinearly

by generating modes with larger kz  that are frequently observed. A theory

suggesting this effect has recently been proposed [Rosenbluth and Sudan,

19861.

In conclusion, we have suggested here that the field-aligned currents

may influence the generation of small-scale plasma irregularities in the

auroral electrojet, via the Farley-Buneman and ion-acoustic instabilities.

This effect could explain the generation of irregularities that are non-

field aligned, or, are generated under the subcritical conditions. These

irregularities are detected by the VHF radar, and, usually appear to be

colocated with the electrojets. We also note that auroral irregularities

have been detected in the regions of the downward Birkeland currents

[Tsunoda et al., 1976; McDiarmid and McNamara, 1978]. Large field-aligned

Icurrents are usually associated with disturbed geomagnetic conditions, and

some of these observations have shown such a correlation. Although, we

have not considered any nonlocal effects, considering the small scalesizes

(X - 3 meter, -1 - 30 - 300 meters) of interest, the basic effect of

parallel currents modifying the threshold criteria of electrojet current-

driven modes should be good to lowest order.
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